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The stochastic parallel gradient descent (SPGD) algorithm is widely used in wavefront sensor-less
adaptive optics (WSAO) systems. However, the convergence is relatively slow. Modal-based algorithms usually
provide much faster convergence than SPGD; however, the limited actuator stroke of the deformable mirror
(DM) often prohibits the sensing of higher-order modes or renders a closed-loop correction inapplicable. Based
on a comparative analysis of SPGD and the DM-modal-based algorithm, a hybrid approach involving both
algorithms is proposed for extended image-based WSAO, and is demonstrated in this experiment. The hybrid
approach can achieve similar correction results to pure SPGD, but with a dramatically decreased iteration
number.
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In wavefront sensor-less adaptive optics (WSAO) systems,
a distinct wavefront sensor is absent and a wavefront
corrector is directly driven to optimize a metric function
related to image quality. The control algorithms inWSAO
can be divided into two categories: model-free algorithms
and modal-based algorithms. Model-free algorithms like
hill climbing[1], genetics[2], and stochastic parallel gradient
descent (SPGD)[3] have been widely used in many scenar-
ios. Their common disadvantages are that a large number
of iterations are usually needed and a global convergence is
not always guaranteed. In modal-based WSAO, the wave-
front aberration is decomposed into specific modes like
Zernike modes[4], Lukosz modes[5,6], or deformable mirror
(DM) modes[7,8]. It has been demonstrated that DMmodes
are superior to analytical modes like the Lukosz modes,
since the mode fitting error can be mostly avoided, espe-
cially for DMs with a low actuator number[7,8]. The modes’
coefficients are calculated directly from the relationship
between the mode coefficient and a proper metric
function. Modal-based algorithms lead to a much faster
convergence than model-free algorithms, and also avoid
dropping into the local optimum.
Both model-free and modal-based algorithms can be

adapted to a point-like source or an extended target.
For high-resolution biological microscopy or earth obser-
vation purposes[9,10], wavefront aberration should be
corrected from an extended image. In this Letter, the
performances of the SPGD and the DM-modal-based
algorithm used for extended image-based WSAO are
evaluated and compared by simulation. From the simula-
tion result, the advantages and drawbacks of the two
algorithms are revealed. Then, a hybrid approach involv-
ing both of them is proposed to avoid drawbacks, and is
further demonstrated by experiment.
SPGD is believed to be one of the fastest model-free

algorithms. In a SPGD, small random perturbations are
applied to all control parameters (voltages of actuators)

simultaneously. Then, the gradient variation of a metric
function is evaluated to update the search direction.
The control signals are updated according to the
following rule:

uk ¼ uk−1 þ γδukδJk ; (1)

where u ¼ fu1; u2;…; uNg is the control signal vector, N is
the number of actuators, and k is the iteration number.
Here, γ is the gain factor, δu denotes small random pertur-
bations that have identical amplitudes and Bernoulli
probability distributions, and δJ is the variation of the
metric function.

For extended image targets, several metric functions
might be used in a SPGD[11]. Here, we use the normalized
image sharpness function that is immune to intensity fluc-
tuations in the light source and the sensitivity variation of
the detector[12]

J ¼
P

I 2ðx; yÞ�P
I ðx; yÞ�2 ; (2)

where I ðx; yÞ is the intensity distribution at the image
plane.

In modal-based WSAO, the low spatial frequency con-
tent of the extended-image spectral density SJ ðmÞ is used
as the metric function[6,8]

gðM 1;M 2Þ ¼
Z

2π

0

Z
M 2

M 1

SJ ðmÞmdmdξ; (3)

where M 1 and M 2 are the normalized spatial frequencies,
ξ is the angle of the spatial frequency, and m ¼
ðm cos ξ;m sin ξÞ. The relationship between the wave-
front aberration Φ and the metric function g is given by
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g ≈ q0 − q1
1
π

ZZ
p
j∇Φj2ds; (4)

where q0 and q1 are constants that depend on the object’s
structure. The wavefront aberrationΦ can be represented
by a series of modes Zi , the derivatives of which are
orthogonal with each other:

Φ ¼
XN
i¼4

aiZi ; (5)
ZZ

p
∇Zi · ∇Zjds ¼

�
1 i ¼ j
0 i ≠ j

: (6)

From the above, Eq. (4) can be rewritten in terms of the
modes’ coefficients as:

g ¼ q0 − q1
XN
i¼4

a2i : (7)

The system’s initial metric function is g0. The metric
function after introducing a positive modal bias þbiZ i

using a DM is gþ, and a negative modal bias −biZ i
corresponds to g−. The required correction amount of each
mode is given by

ai;corr ¼ −ai ¼ −
biðgþ − g−Þ

2gþ − 4g0 þ 2g−
: (8)

To calculate certain mode coefficients, at least three
measurements of the metric function are required, and
2N þ 1 measurements should be taken for N modes
correction.
The Lukosz modes satisfying Eq. (6) were initially used

to describe the wavefront aberration[6]. However, the DM
modes derived from the influence function matrix are more
suitable in practice for wavefront correction, especially
when the total actuator number is small[7,8]. The matrix
consisting of the influence functions of all of the actuators
is defined as ω. Its derivative matrix ∇ω can be converted
into a multiplication of three matrices by singular value
decomposition as

∇ω ¼ ð∇UÞSVT: (9)

The matrix U can be obtained from the integration of
Eq. (9):

U ¼ ωðSVTÞ−1: (10)

The columns of matrix U are derivative-orthogonal
modes (i.e., DM modes) that also meet the requirements
of Eq. (6). The DM modes are normalized by the root
mean square (RMS) value. So a unit amplitude of the
DM mode corresponds to a phase deformation with
RMS ¼ 1 rad, which is similar to the definition of
standard Zernike polynomials.
In our simulation, a 37-channel DM model is built with

a Gaussian-type influence function (coupling coefficient ¼

0.2). The dotted inner circle in Fig. 1 denotes the actual
pupil size, which is reduced to about two-thirds of the DM
aperture in order to obtain an optimized wavefront fitting
result[13].

The extended imaging object is a typical remote sensing
image, such as the one used in Ref. [8]. Input wavefront
aberrations are generated by applying random driving sig-
nals to the DM actuators, which means that in theory,
these aberrations can be fully corrected by the DM, so
we can focus on the performance of the algorithms. The
RMS values of these wavefront aberrations are then
normalized to 1, 3, and 5 rad. For 100 wavefront error
samples, the averaged residual wavefront RMS error after
the correction of the SPGD and the DM-modal-based
algorithm are shown in Figs. 2 and 3, respectively. From
Figs. 2 and 3, we can see that, given sufficient iterations,
the two algorithms both lead to satisfactory correction
results. However, the required iteration number of the
modal approach is much less than that of the SPGD.

Although it provides fast convergence, the modal
approach has its drawbacks. First, the DM modes
must be calibrated exactly by a wavefront sensor or an
interferometer in advance, which is not a prerequisite
for the SPGD. Second, the required mode bias amplitude

Fig. 1. The actuator arrangement of a 37-channel DM.

Fig. 2. The residual wavefront error varies with the iteration
number in the SPGD correction.
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[bi in Eq. (8)] is much larger than the random perturbation
amplitude [amplitude of δu in Eq. (1)] in the SPGD. So in
practice, the modal approach is more prone to a stroke sat-
uration (or stroke insufficiency) problem, especially when
producing some higher-order modes that require larger
actuator signals[14,15]. The stroke saturation problem will
prevent the sensing of some higher-order modes or render
closed-loop correction inapplicable if the DM dynamic
range is not large enough.
For a different mode bias amplitude, the residual wave-

front error after a one-cycle correction is shown in Fig. 4.
From Fig. 4, we can see that the optimized bias amplitude
is around 1.5 rad. Here, the signal-to-noise ratio (SNR),
which is defined as the ratio of the image variance to
the noise variance, is set to 50. The bias amplitude can
be even larger for a lower SNR. The peak-to-valley
(PV) value of each DM mode with its unit amplitude
(bi ¼ 1) is shown in Fig. 5. According to Fig. 5, to generate
all 37 DM modes with amplitude of 1.5, the actuator

stroke requirement is about 1.5λ. This requirement might
be easily satisfied in first correction cycle. But the stroke
will probably be insufficient for the next iteration when
the input aberration is large. In the SPGD, the perturba-
tion amplitude is 0.1 when SNR ¼ 50 and the correspond-
ing stroke requirement is about 0.03λ. So actuator stroke is
generally not a limitation factor in SPGD. This issue is
further illustrated later by experiment.

To avoid the stroke saturation problem in the modal-
based algorithm, a hybrid approach involving both
modal-based and modal-free algorithms is proposed.
The hybrid approach is a two-step process. The wavefront
aberration is first corrected by a modal-based algorithm
and the residual error is further corrected by SPGD, which
will take the phase estimation result of the modal-based
algorithm as a good start point.

The hybrid approach has been demonstrated by experi-
ment. The experimental system is depicted in Fig. 6. The
insertable point light source is a 635 nm laser coupled with
a single-mode fiber. The Shack–Hartmann wavefront

Fig. 3. The residual wavefront error varies with the iteration
number in the DM-modal-based correction.
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Fig. 4. The residual wavefront error varies with the mode bias
amplitude. SNR ¼ 50.
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Fig. 5. The PV value of each DMmode with the unit amplitude.

Fig. 6. The experimental system layout.
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sensor (S–H WFS) from the Imagine Optics Corporation
features 76 × 100 sub-apertures and λ∕100 (RMS) mea-
surement accuracy. Please note that here the S–H WFS
is only used to measure the initial and residual wavefront
errors and to calibrate the DM. It will not be used during
the wavefront correction. The DM is a 37-channel
membrane DM from the OKO International Company.
The imaging target illuminated by the white light source
is a 1951 USAF resolution test target. The insertable
phase plate is a trial lens used to induce the wavefront
aberration.
Before correction, the point light source branch is

moved into the system and the influence functions of
the DM are measured by the S–H WFS to deduce the
DM modes according to Eq. (10). The DM modes were
already illustrated in Ref. [8]. Then, the phase plate is in-
serted into the system. The initial wavefront error and
corresponding distorted image are shown in Fig. 7.
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Fig. 7. The initial wavefront error (PV ¼ 19.2 rad and
RMS ¼ 4.3 rad) and the corresponding image.
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Fig. 8. The residual wavefront error after a one-cycle correction
of the DM-modal-based algorithm, where PV ¼ 9.12 rad, and
RMS ¼ 1.48 rad. Image after correction (right).
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Fig. 9. The residual wavefront error after the SPGD
correction, where PV ¼ 2.87 rad and RMS ¼ 0.26 rad. Image
after correction (right).

Fig. 10. The metric function-changing curve. (a) The hybrid
correction. (b) The only SPGD correction. (c) The only modal
correction with a different bias amplitude (unit: rad).
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In hybrid correction, the wavefront error is first cor-
rected by DM-modal-based algorithm. Then, the SPGD
algorithm is applied to refine the correction results. The
correction results and related images are shown in Figs. 8
and 9.
The changing curve of the metric function [Eq. (2)] dur-

ing hybrid wavefront correction is shown in Fig. 10(a).
The metric function-changing curves from using the
SPGD and modal approach alone are plotted for
comparison in Figs. 10(b) and 10(c), respectively. In
Fig. 10(c), the modal correction process with different
bias amplitudes are illustrated. Iterative correction is
prohibited because of the stroke saturation problem,
as discussed before. With a bias amplitude of 2 rad,
iterative correction is stopped after one cycle. The conver-
gence value of the hybrid correction and the SPGD is very
close to 4.6 × 10−5. However, the iteration number of the
hybrid correction is dramatically decreased from 1000
to 200.
In conclusion, we experimentally demonstrate a hybrid

approach involving both a DM-modal-based algorithm
and the SPGD for extended image-based WSAO. The
actuator-saturation problem in modal-based correction
is solved by the SPGD correction. The convergence of
the hybrid approach is much faster than SPGD alone
because it uses a good starting point originating from
the modal correction result.
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